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Abstract

This work is focused on mathematical modeling of reaction-transport processes in a microdevice for immunoassay. A mathematical model
of a four-layer microdevice for a multiple enzyme-linked immunosorbent assay (ELISA) analysis in a serial configuration is proposed.
Effects of electrokinetic transport and some significant parameters (e.g. antibody effective diffusivity/mobility, convective velocity, fixed
charge in a porous membrane) on the immunoassay procedure are studied. The mathematical model includes component balances and
Poisson equation of electrostatics. Steady-state analysis shows qualitative effects of the model parameters on the concentration of antibody
in the reaction area. Dynamical analysis quantitatively reveals effects of crucial parameters on the time needed for the immunoassay
procedure. It was observed that this time can be reduced to several minutes by a proper choice of control parameters. One complete step
of ELISA application in the series arrangement of probes is analyzed in detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Immunoanalytical methods are widely used in disease
diagnostics (e.g. viral or bacterial infections, cancer, throm-
bosis), screening of environmental pollution, detection of
weapons of mass destruction (chemical and biological
weapons), etc.[1]. Immunoassays are based on a com-
plementary non-covalent reaction between an antigen and
a corresponding antibody. A frequently used immunoan-
alytical method is enzyme-linked immunosorbent assay
(ELISA). Either an antigen or an antibody is immobilized
on a sorbing matrix. The complementary compound in a
sample, usually tagged by a detectable molecule, binds
firmly to the molecules in the matrix. After elution of excess
complementary molecules, an antigen–antibody complex
in the matrix can be detected by a standard bioanalytical
method. Commercially successful are sandwich ELISA
methods. For example, an immobilized antigen binds a pri-
mary human antibody from a sample. After the first elution,
a secondary antibody, for example a tagged rabbit antibody
against the human antibodies, is introduced to the primary
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antibody–antigen complex. The secondary antibody forms a
secondary antibody—primary antibody—antigen complex.
After the second elution, this complex can be detected by
any suitable method.

Recent expansion in the use of DNA chips[2] and capil-
lary electrophoresis[3,4] motivates efforts to further develop
immunoassay chips. Microchips open new possibilities in
immunoanalysis applications. Most steps of the immunoas-
say procedure can be integrated within a simple chip[5].
Other benefits of bio-microdevices are ease of massive par-
alelization, low consumption of expensive chemicals, and
better reproducibility.

Many experimental microchips for immunoassay (espe-
cially for ELISA) were recently described[5–14]. Dodge
et al.[5] constructed an experimental ELISA microchip with
a high degree of integration. This microdevice is able to de-
tect the rabbit immunoglobulin G (antibody) by means of the
protein A (antigen) immobilized in the reaction part of the
microchip. The following steps of immunoassay procedure
are done electrokinetically: sample dosage, washing and elu-
tion of the antibody. The device integrates sample dosage,
incubation, washing, detection, and elution. The time of the
incubation phase is less than 5 min. The described device
can be used several times and its parallelization is probably
possible.
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The sample dosage and flow inside the microdevice
can be effectively controlled by electrokinetic phenomena:
electrophoresis and electroosmosis[5,11,12]. If an external
electric field is imposed on a microchannel structure, the
electroosmotic flow of the solution occurs in the microchip
structure because of charge bound to microchannel walls
and/or in a porous matrix. Electrokinetic transport can be
dominant within microchannels. This possibility is given
by a high intensity of transport of the Joule heat out of
the device when a high voltage is applied[2]. A suitable
intensity of the electric field and its spatial orientation can
result in a local increase of antibody (antigen) concentra-
tion in the matrix with the immobilized complementary
compound, hence the time needed for the immunoassay
decreases.

Most of the publications describe experiments on mi-
crochips for immunoanalytical applications. Construction of
such a microdevice often involves a lot of trial and error.
Thus mathematical modeling of processes inside the mi-
crodevices can become a useful tool for acceleration of the
development of bio-microapplications. However, mathemat-
ical description of such microsystems is not an easy task. It
usually means to solve appropriate mass balances of com-
ponents and equations for distribution of electrostatic poten-
tial, velocity, and pressure in the microsystem. It is still a
non-trivial problem, especially if 2D or 3D spatiotemporal
patterns are to be computed.

Ermakov et al.[15,16] numerically studied the electroki-
netic transport mechanisms in microvalves (two microchan-
nels in the cross arrangement). These microvalves can be
used for sample injection in a microchip. The authors deter-
mined a voltage for maximal concentration of a compound
in a sample. Li[17] focused on a detailed mathematical
description of the electrokinetic phenomena in microchan-
nels and their impacts on the behavior of the microsystem.
The author deals with the properties of an electrical double
layer. Electroviscous effects and impacts of the electroki-
netic transport on velocity distribution inside the channel
are also described. Lindner et al.[18] studied distributions
of component concentrations and electrostatic potential in a
simple system with a narrow acid–base boundary. The au-
thors found that such a system can exhibit diode-like behav-
ior. Similar phenomena are usually observed, under certain
conditions, near a liquid–solid phase interface (i.e., in ev-
ery ELISA system). Khandurina et al.[19] demonstrate the
use of semipermeable membranes to concentrate a macro-
molecular analyte. We speculate that an ELISA system can
contain a semipermeable membrane directly at the reaction
compartment to accelerate the entire immunoassay proce-
dure.

In the first part of the paper, we propose a general system
for the ELISA application with a corresponding simplified
mathematical description. Our analysis is focused on both
the steady-state and dynamical analysis of the system. In the
final part, we provide and discuss result of simulation for
one complete immunoassay cycle.

2. Mathematical model

Our mathematical model is derived for the microdevice
shown inFig. 1. The proposed biochip integrates all steps
usually contained in the immunoassay. Let us assume that
the sandwich ELISA procedure can be realized in series in
a single channel with connected detection probes. The or-
der of particular steps during the immunoassay is shown in
Fig. 1A. A sample with a primary antibody or a tagged sec-
ondary antibody is introduced into the central microchannel
of the system. The sample is then directly addressed into
a chosen probe. Each probe contains two porous compart-
ments. The reaction and detection environments form the
first one. An antigen is immobilized within a thin gel layer.
After some time, the antibody from the sample and the im-
mobilized antigen form an antigen–antibody complex. The
other porous compartment is a semipermeable membrane.
This compartment is located immediately behind the reac-
tion environment. The semipermeable membrane has two
important functions. The membrane is completely imperme-
able for large molecules such as antibodies and thus helps to
concentrate the antibody in the reaction compartment. The
polymer matrix of the semipermeable membrane can contain
a large amount of fixed electrostatic charge. This property is
necessary to induce electroosmotic convection in the system

Fig. 1. (A) Microdevice for an immunoassay with probes in series. Spa-
tially 2D system with three immunoanalytical probes. The control unit
(CU) controls the electroosmotic convection and the electromigration
transport in the system by means of voltage control in the entire system.
The sample is released from the right probe where the antibody detec-
tion can start. At the same time, the antigen–antibody incubation reaction
occurs in the middle probe. The left probe is ready for analysis. (B)
The scheme of a single probe. The probe consists of four compartments.
Numbers 1, 2, 3, and 4 denote the input compartment, the reaction com-
partment, the semipermeable compartment, and the output compartment,
respectively. The arrows show directions of the antibody total flux that are
necessary for the incubation and elution phases of an ELISA application.
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if an external electric field is applied. After the incubation
reaction in the first probe, the sample with the antibody can
be re-addressed to the next probe. At the same time, excess
antibody from the first probe is released and the detection
of the antigen–antibody complex can start. This procedure
can be repeated for all chosen probes in the microchannel.
The addressing occurs via electrokinetic effects (electroos-
mosis and/or electrophoresis) and/or by a pressure gradient.
The electroosmotic transport of the carrying solution can be
the dominant transport phenomenon in the system when a
microporous semipermeable membrane with fixed electro-
static charge is used. Then, a unit for voltage control (CU)
can serve as an efficient tool for antibody addressing.

We first focus on a steady-state and dynamical analysis of
a single probe (seeFig. 1B). This probe consists of four lay-
ers. A solution with a sample is introduced through the input
compartment. The second and the third layers are the re-
action compartment and semipermeable membrane, respec-
tively. The last compartment contains an output solution free
of antibody. The required direction of the antibody transport
is from the input compartment to the reaction compartment
during the incubation phase. The opposite direction of trans-
port is necessary for elution of the excess antibody. Our task
is to find a proper set of parameters to attain an efficient
transport of the antibody during both the incubation and the
elution phases, because high concentration of the antibody
in the reaction compartment is the key for the decrease of
the operation time of the immunoassay.

We consider the following components in the ELISA sys-
tem: antibody (AbzAb), antibody–antigen complex (CzAb),
the buffer in both the electroneutral (B) and the electrically
charged (protonized) forms (Bp+), the chloride counterion
(Cl−) of the protonized form of buffer, hydroxyl ions (OH−)
and protons (H+). The total concentration of the antigen
(Ag) in the reaction environment is the sum of the con-
centration of the free antigen and the concentration of the
antigen–antibody complex, and this sum is constant in time
and space. The Tris buffer, which is typically used in the
ELISA applications, was chosen as a model buffer. The su-
perscripts denote the charge numbers of a particular com-
pound. The antibody molecules can posses varying charge
numberzAb. In our study, we have consideredzAb as a model
parameter. It is assumed that the charge number of the anti-
body is equal to the charge number of the antigen–antibody
complex because the antigen is considered to be electroneu-
tral. For simplicity, the charge numbers are omitted from the
subscripts in equations and tables.

There are three chemical/biochemical interactions in the
proposed system:

H2O
Kw
�H+ + OH−, Bp+Kb

�H++ B, CzAb
Kc
�AbzAb+ Ag,

the recombination reaction of water, buffer dissociation/
association reaction and the antigen–antibody forma-
tion/dissociation reaction, respectively. The first two inter-
actions occur in the entire system, the antigen–antibody

interaction is limited only to the reaction domain with
immobilized antigen.

Each probe of the ELISA system is generally 3D in space.
However, the transport in the directions perpendicular to the
longitudinal axis (seeFig. 1B) can be considered as fast in
most cases because of a low ratio of the lateral to longitudinal
dimension of the system (the ratio is expected to be of the
order of 1/50). Hence, we use spatially 1D description of
the proposed system.

The non-stationary molar balance can be written in the
standard form,

∂ci

∂t
= −∂Ji

∂x
+

∑
j

υijrj,

i= H+,OH−,Cl−,B,Bp+,CzAb,AbzAb . (1)

From the left, there are three terms in the balance: the accu-
mulation term, the term describing divergence of total flux
Ji, and the sum of all reaction sources for the compoundi.
Eq. (1) is used in the whole system for most of the compo-
nents. There are two exceptions: (1) The antibody molecules
are limited to the input and the reaction compartments be-
cause of the presence of the semipermeable membrane. (2)
The molecules of the antigen–antibody complex are strictly
located in the reaction compartment.

The total flux of the componenti is given by the sum of
convection, diffusion, and electromigration fluxes

Ji = JC
i + JD

i + JE
i = vxci −Di

∂ci

∂x
− ziDiF

RT
ci
∂Φ

∂x
,

i= H+,OH−,Cl−,B,Bp+,AbzAb . (2)

The velocity of the liquid flowvx is constant in this 1D
incompressible system so that the continuity equation is sat-
isfied. This fact significantly reduces the complexity of de-
scription since Navier–Stokes equations are eliminated and
the convection velocity becomes only a fixed parameter of
the model. In this case, the resulting velocity of liquid flow
can be considered as a sum of the velocity of electroosmotic
flux and the velocity given by an external pressure gradient.

The Nernst–Planck equation is used for the description of
the diffusion and the electromigration fluxes inEq. (2). Let
us note that the description of electromigration of macroob-
jects such as antibodies by means of the Nernst–Planck
equation is only approximate. The electrophoretic motion
of a charged particle moving in a fluid under the ac-
tion of an applied electric field can be described by the
Helmholtz–Smoluchowski equation[20]

vxe = −εζE
µ

∂Φ

∂x
, (3)

where thevxe is the electrophoretic velocity,ε the permit-
tivity of the environment,µ the viscosity of the electrolyte
and ζE the electrophoretic zeta potential. The value of the
zeta potential is a property of the macromolecule (antibody)
and depends also on the composition of the surrounding
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electrolyte. Determination of the zeta potential is generally
difficult and is usually based on carefully evaluated experi-
ments. If we look at the electrophoretic velocity used in the
Nernst–Planck expression

vxe = −zAbDAbF

RT

∂Φ

∂x
, (4)

we can accept a formal simplification that the product
zAbDAb in Eq. (4) is proportional to the zeta potential and
to material properties (such as viscosity and permittivity) in
Eq. (3). Then we can assume thatzAb is an effective charge
number that can be generally non-integer. Similarly, the
diffusion coefficientDAb in Eq. (4)is an effective diffusion
coefficientDef

Ab that generally does not correspond to the
diffusion coefficientDAb in the Fick’s law of diffusion. In
our numerical simulations, we have setDef

Ab ≈ DAb. The
description of electromigration by means ofEq. (4) is thus
formally equivalent to the description byEq. (3).

All parameter values of this model are summarized in
Table 1and in the figure captions. Because the diffusivities
of larger molecules differ in a free solution of electrolyte

Table 1
Model parameters

Parameter Description Value Units

cH|x=0,L Boundary concentrations of protons 1× 10−5 mol m−3

cOH|x=0,L Boundary concentrations of hydroxyl ions 1× 10−3 mol m−3

cCl|x=0,L Boundary concentrations of chloride ions 3.331× 101 mol m−3

cB|x=0,L Boundary concentrations of buffer 1.669× 101 mol m−3

cBp|x=0,L Boundary concentrations of protonized buffer 3.331× 101 mol m−3

cAg,tot Total concentration of the immobilized antigen 1× 10−3 mol m−3

Φ|x=L Electrostatic potential on the boundary 0 V
DH,D

p
H Diffusion coefficient of protons 9.31× 10−9 m2 s−1

DOH,D
p
OH Diffusion coefficient of hydroxyl ions 5.28× 10−9 m2 s−1

DCl Diffusion coefficient of chloride ions in a free solution 2.04× 10−9 m2 s−1

DB, DBp Diffusion coefficient of buffer in a free solution 3.734× 10−10 m2 s−1

D
p
Cl Diffusion coefficient of chloride ions in a porous medium 1.02× 10−9 m2 s−1

D
p
B,D

p
Bp Diffusion coefficient of buffer in a porous medium 1.867× 10−10 m2 s−1

l1 Length of the input compartment 2× 10−4 m
l2 Length of the reaction compartment 1× 10−5 m
l3 Length of the semipermeable compartment 1× 10−4 m
l4 Length of the output compartment 2× 10−4 m
L = ∑4

i=1li Dimension of the system 5.1× 10−4 m
zH Charge number of protons 1 1
zOH Charge number of hydroxyl ions −1 1
zCl Charge number of chloride ions −1 1
zB Charge number of buffer 0 1
zBp Charge number of protonized buffer 1 1
zAg Charge number of the immobilized antigen 0 1
F Faraday’s constant 9.6487× 104 C mol−1

R Molar gas constant 8.314 J mol−1 K−1

T Temperature 310 K
kw Kinetic constant of water recombination 1.3× 108 m3 mol−1 s−1

Kw Ionic product of water 1× 10−8 mol2 m−6

kb Kinetic constant of buffer protonization 1.3× 107 m3 mol−1 s−1

Kb Equilibrium constant of buffer dissociation 5.012× 10−6 mol m−3

kc Kinetic constant of antigen–antibody complex formation 1× 105 m3 mol−1 s−1

Kc Equilibrium constant of antigen–antibody complex formation 1× 10−7 mol m−3

ε0 Vacuum permittivity 8.8542× 10−12 F m−1

εr Relative permittivity of water 8.139× 101 l

and in a porous medium, we have used lower (effective)
values of diffusion coefficients in both the reaction and the
semipermeable compartment than in the input/output solu-
tions. These diffusion coefficients are marked by the super-
script ‘p’.

The expressions for reaction rates of the chemi-
cal/biochemical reactions mentioned above are written as

rw = kw(Kw − cHcOH), rb = kb(KbcBp − cHcB),

rc = kc(KccC − cAb(cAg,tot − cC)), (5)

whererw is the reaction rate of the recombination reaction of
water,rb the reaction rate of buffer dissociation/association
reaction andrc the reaction rate of the antigen–antibody
formation/dissociation reaction (seeTable 1 for values of
kinetic and equilibrium constants). The assumption of an
instantaneous equilibrium of the water and buffer reactions
is not used. We consider finite rates of these interactions.

The electromigration of charged components (Cl−,Bp+,
OH−,H+,AbzAb) depends on the distribution of electro-
static potentialΦ in the system. This distribution can be
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computed from the Poisson equation,

εrε0
∂2Φ

∂x2
= −qmob − qfix, (6)

whereεrε0 denotes the permittivity that generally depends
on the composition of the environment. Here we consider a
constant permittivity in the entire system and in numerical
simulations set it at water permittivity. The local charge
in the Poisson equation consists of mobile charge carried
by ions in the solutionqmob and volume charge bound in
the porous/semipermeable matrixqfix. The mobile charge is
given by the local composition of the electrolyte according
to Eq. (7)

qmob = F
∑
i

zici, i = H+,OH−,Cl−,Bp+,CzAb,AbzAb,

(7)

and the fixed charge is a property of the porous medium (gen-
erally depending on the composition of the mobile phase).
In our computations, we consider a constant nonzero value
of qfix in the reaction and the semipermeable compartments.

We have chosen the following boundary conditions:

ci|x=0 = cx0i, i = H+,OH−,Cl−,B,Bp+,AbzAb,

ci|x=L = cxLi, i = H+,OH−,Cl−,B,Bp+,
JAb|x=l1+l2 = 0,

ci|x→l1− = ci|x→l1+, Ji|x→l1− = Ji|x→l1+,
i = H+,OH−,Cl−,B,Bp+,AbzAb,

ci|x→(l1+l2)− = ci|x→(l1+l2)+,
Ji|x→(l1+l2)− = Ji|x→(l1+l2)+,
i = H+,OH−,Cl−,B,Bp+, (8)

ci|x→(l1+l2+l3)− = ci|x→(l1+l2+l3)+,
Ji|x→(l1+l2+l3)− = Ji|x→(l1+l2+l3)+,
i = H+,OH−,Cl−,B,Bp+,
Φ|x=0 = Φx0, Φ|x=L = ΦxL,

Φ|x→l1− = Φ|x→l1+, Φ|x→(l1+l2)− = Φ|x→(l1+l2)+,

Φ|x→(l1+l2+l3)− = Φ|x→(l1+l2+l3)+,
∂Φ

∂x

∣∣∣∣
x→l1−

= ∂Φ

∂x

∣∣∣∣
x→l1+

,

∂Φ

∂x

∣∣∣∣
x→(l1+l2)−

= ∂Φ

∂x

∣∣∣∣
x→(l1+l2)+

,

∂Φ

∂x

∣∣∣∣
x→(l1+l2+l3)−

= ∂Φ

∂x

∣∣∣∣
x→(l1+l2+l3)+

.

The Dirichlet boundary conditions are specified for electro-
static potential and all mobile components (except the anti-
body) on both external boundaries of the system (i.e.,x = 0
andx = L). The antibody concentration is considered to be

constant only on the input external boundary (x = 0). The
condition of zero flux for the antibody is used on the inter-
face between the reaction and the semipermeable compart-
ments (x = l1 + l2). The other boundary conditions on all
internal interfaces of the system (x = l1, x = l1 + l2, x =
l1 + l2 + l3) follow existence of continuity in distributions
of concentrations, total fluxes, electric potential, and electric
field strength.

Eqs. (1), (6) and (8)form the system of model equations.
These equations were transformed into dimensionless form
that is more convenient for numerical analysis. The dimen-
sionless form of model equations is given inAppendix A
(seeTable 2 for definition of dimensionless variables, di-
mensionless groups and scaling factors). Asterisks in super-
scripts of variables denote a dimensionless variable.

Table 2
Dimensionless variables and parameters, scaling factors

Dimensionless variables

x∗ ≡ x

x0
Length

v∗ ≡ vx

v0
Convection velocity

c∗Ab ≡ cAb

cAb|x=0
Concentration of antibody

c∗i ≡ ci√
Kw

, i = H+,OH− Concentration of protons, and
hydroxyl ions

t∗ ≡ t

t0
Time

Φ∗ ≡ Φ

Φ0
Electrostatic potential

c∗C ≡ cC

cAg,tot
Concentration of complex

c∗i ≡ ci

cB

∣∣∣∣
x=0

, i = Cl−,B,Bp+ Concentration of chloride ions,
buffer, and protonized buffer

Dimensionless parameters

DaH =
√
Kwkwl

2
2

DAb
Damköhler number—water
recombination

DaB = cB|x=0kbl
2
2

DAb
Damköhler number—buffer
dissociation

DaC = cAg,totkcl
2
2

DAb
Damköhler number—complex
formation

Di ≡ Di

DAb
Ratio of diffusion coefficients

Q ≡ qfix

FcB|x=0
Ratio of the fixed charge and
charge in the free electrolyte

G ≡ cB|x=0l
2
2F

2

RTε
Ratio of squares of the geometrical
length and the Debye length

Scaling factors

x0 = l2

t0 = l22

DAb

v0 = x0

t0
= DAb

l2

Φ0 = RT

F
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Let us note that we have neglected all temperature changes
in our microdevice considering a high ratio of heat-exchange
surface to internal volume.

3. Numerical analysis

Dimensionless model equations (seeAppendix A) and
their boundary conditions were analyzed by the method of
finite elements. The FEMLAB2.3® package was employed
in this study. A non-equidistant net of grid points was used
in order to eliminate errors and computational problems near
phase interfaces where sharp concentration and potential
changes were observed. The ratio of lengths of the net ele-
ments in a flat region (e.g. the center of the input compart-
ment) and at a phase interface (e.g. between the input and
the reaction compartments) was 104. An implicit FEMLAB
solver fldaspk (based on backward differentiation formulae)
was used for dynamic analysis of the problem.

4. Results and discussion

4.1. Steady-state analysis

Effects of important model parameters on steady states
of the proposed ELISA system were analyzed in the first
step.Fig. 2 shows steady-state profiles of the dimension-
less antibody concentration in the input compartment (i.e.
x∗ ∈ (0; 20), seeAppendix A) and the reaction compart-
ment (i.e.x∗ ∈ (20; 21)). Pointx∗ = 20 corresponds to the
internal interface where the inlet compartment touches the
reaction compartment and the boundary conditions (Eq. (8))
have to be satisfied. The effects of convective velocity, the
effective charge number of the antibody and the imposed
electrostatic potential are depicted. An antibody molecule is
a typical ampholyte. Hence the effective charge number of
the antibody can substantially affect the electrophoretic flux
of biomacromolecules in the system.

WhenzAb = 0, we can observe the effect of convective
velocity (Fig. 2A). In this arrangement with a fixed negative
charge in the porous compartments and a positive electro-
static potential at the input boundary, the direction of the
electroosmotic convection is oriented from the input to the
output compartment. It means thatvx is positive. The elec-
troosmotic flow of relatively low intensity (vx = 1�m s−1)
can result in large increase of the antibody concentration
in the reaction compartment (up to two orders of magni-
tude). This effect is amplified when the antibody carries a
positive charge (seeFig. 2B). In this case, the effects of
electroosmotic convection and electrophoretic migration are
summed up. The resulting concentration of the antibody is
then by six orders of magnitude higher than the inlet anti-
body concentration. It substantially increases reaction rate
of the antigen–antibody complex formation. Let us note that
the dimensionless antibody concentrationc∗Ab ≈ 1 × 106

Fig. 2. Steady-state profiles of the dimensionless antibody concentration.
Effects of antibody charge number, imposed potential, and convection
velocity. (A) Φ|x=0 = 1 V, zAb = 0, (B) Φ|x=0 = 1 V, zAb = 1, (C)
Φ|x=0 = 1 V, zAb = −1, (D) Φ|x=0 = −1 V, zAb = 1, (E)Φ|x=0 = −1 V,
zAb = −1. vx = 1�m s−1 (solid line), vx = 0�m s−1 (dashed line),
vx = −1�m s−1 (dotted line). The other model parameters are as in
Table 1 and cAb|x=0 = 4 × 10−6 mol m−3, qfix = −1 × 106 C m−3,
DAb = 5 × 10−11 m2 s−1, Dp

Ab = DAb/5.

corresponds to the antibody mass concentration of hundreds
kilograms per cubic meter, which is the physical limit be-
cause of the possible formation of gel-like structures from
the antibody molecules. On the other hand, such a large con-
centration of the antibody is attained only after very long
time period. If we neglect both the diffusion transport and the
antigen–antibody interactions and assume linear profile of
potential through the system,∂Φ/∂x ≈ (Φ|x=L−Φ|x=0)/L
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we can compute time necessary to reach this concentration
in the reaction environment. After reaching it, the total flux
of the antibody in the input compartment is approximately
equal to the accumulation of antibody in the reaction com-
partment,

t = nAb|reaction comp

A(JC
Ab + JE

Ab)|x=0

= cAb(t)|reaction compl2

(vxcAb − (zAbDAbF/RT)(∂Φ/∂x)cAb)|x=0
. (9)

In Eq. (9), nAb|reaction comp is the total molar amount of the
antibody accumulated in the reaction compartment,A the
surface of the probe cross-section. For our set of parame-
ters, the required time is about 24 days, which fully cor-
responds with the results of dynamical simulations. Hence,
the computations of steady states can be used only as a tool
for qualitative predictions of the effects of various model
parameters on global behavior of the system.

Results for other combination of the imposed electro-
static potential and charge number are shown inFig. 2C–E.
Generally, if the direction of electrophoretic migration (de-
pends on the antibody charge number and the electric field
orientation) is from the input compartment to the reaction
compartment, a substantial increase of the antibody concen-
tration in the reaction compartment is observed (Fig. 2B
and E). This regime is required for the incubation phase of
the ELISA procedure. A decrease of the antibody concen-
tration in the reaction compartment occurs if the opposite
orientation of electrophoretic migration of the antibody is
considered (Fig. 2C and D). Such a regime prevails during
the elution/detection phase of the ELISA application. Elec-
troosmotic convection or convection induced by an external
pressure gradient may strongly affect the resulting antibody
concentration. But the velocity of the convection flow of the
order of 1�m s−1 is relatively small. For higher values of
the convective velocity, other phenomena can be observed.
For example, a full suppression of electrophoretic migration
of the antibody by electroosmotic convection, etc.

The solid line in Fig. 3A shows the steady-state dis-
tribution of the electrostatic potential in the entire probe
when no electrostatic charge is fixed in the reaction and the

Fig. 3. Steady-state distribution of electrostatic potential in the whole system (A), the local steady-state profile of the electric field intensityE≡ − ∂Φ/∂x
(B), and steady-state profiles of dimensionless antibody concentration in the input and the reaction compartments (C). Effects of the fixed charge:
qfix = 0 C m−3 (solid line),qfix = −1×105 C m−3 (dash-dotted line),qfix = −1×106 C m−3 (dotted line),qfix = −2×106 C m−3 (dashed line). The other
model parameters arevx = 0�m s−1, zAb = 0.5, Φ|x=0 = 1 V, cAb|x=0 = 4 × 10−6 mol m−3, DAb = 5 × 10−11 m2 s−1, Dp

Ab = DAb/5, see alsoTable 1.

semipermeable compartmentsx∗ ∈ (20; 31). We can see that
this profile is piece-wise linear. The slope of the decrease of
the potential is higher in the porous compartments because
of lower diffusivities of the key ions (the chloride anions and
the protonized form of the buffer). For example, the chloride
anions are not consumed in any chemical transformation and
thus their total flux has to be constant in the whole system.
It implies that a lower diffusivity of the chloride anions is
compensated by a higher value of the electric field intensity
E≡ − ∂Φ/∂x in the central region of the ELISA probe. The
corresponding profiles of the electric field intensity and the
dimensionless antibody concentration are shown inFig. 3B
and C. For clarity, theFig. 3B is focused only on the inter-
face between the input and the reaction compartment.

Local phenomena at the phase interface (input solu-
tion/reaction environment) caused by the presence of the
fixed charge in the porous compartments also affect the
antibody concentration in the reaction compartment. For
that reason, behavior of the proposed ELISA system is
asymmetric (see differences betweenFig. 2B and Eand
betweenFig. 2C and D). The effects of the fixed charge
become important when the amount of the fixed charge is
comparable with the amount of electrostatic charge carried
by the components of the electrolyte,

cF ≈ |qfix |, (10)

wherec is a characteristic chemical concentration of ions
in the electrolyte. Whenqfix = −1 × 105 C m−3, effects of
the fixed charge on behavior of the system are negligible.
However, when the values of the fixed negative charge are
higher by one order of magnitude, much faster decrease
of the electrostatic potential near the interface of the input
and the reaction compartments can be observed. Electric
field intensities higher than 1 MV m−1 are observed near the
interface (seeFig. 3B).

This phenomenon can be explained as follows. The pro-
tonized form of the buffer (the dominant cation) is strongly
attracted to the interface in the region with the fixed negative
charge. For a given orientation of the electric field, the re-
sulting direction of total flux of the protonized buffer is from
the input compartment to the output compartment. This flux
has to be approximately constant in the whole system (there
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Fig. 4. Dynamical analysis of effects of model parameters on the antigen–antibody complex interactions. Time period necessary to achieve 50% saturation
(the dashed line) and 90% saturation (the solid line) of the antigen binding sites. (A) dependence onΦ|x=0, (B) dependence onvx, (C) dependence on
DAb. The parameter values are (A)vx = 1�m s−1, DAb = 5×10−11 m2 s−1, (B) Φ|x=0 = 1 V, DAb = 5×10−11 m2 s−1, (C) vx = 1�m s−1, Φ|x=0 = 1 V.
The other model parameters areqfix = −1 × 106 C m−3, zAb = 1, cAb|x=0 = 4 × 10−6 mol m−3, Dp

Ab = DAb/5, see alsoTable 1.

is a small consumption of the protonized form of the buffer
in the dissociation reaction). High level of the fixed negative
charge is able to deplete almost all positively charged ions
from the input solution. The concentration of the protonized
form of the buffer drops to zero near the phase interface and,
similarly, the concentration of the chloride anion is low as
the system cannot deviate much from the electroneutrality.
The resulting conductivity near the interface is very low and
thus the electric field intensity has to increase strongly in
order to keep the constant flux of the key electrolyte com-
ponents through the system.

The fixed negative charge has also an effect on the mi-
nority ions such as antibody molecules. High intensity of
the electric field accelerates (ifzAb > 0) transport of the
antibody from the input compartment to the reaction com-
partment. InFig. 3C, we can observe sharp increase of the
antibody concentration near the interface input compart-
ment/reaction compartment (x∗ = 20).

4.2. Dynamical analysis

Results of the steady-state analysis are quite intuitive. In
order to evaluate real capabilities of the proposed ELISA
microdevice, we have to study this system from a dynami-
cal point of view. Fast accumulation of the antibody in the
reaction environment is the most important property of the
system. We define two auxiliary time variables to quantify
the dynamical properties of the microdevice:t50 and t90.
These saturation times correspond to 50 and 90% saturation
of the antigen by the antibody molecules in the reaction en-
vironment according to

∫ 1

0
c∗c(x

∗, t∗50)dx∗ = 0.5, and

∫ 1

0
c∗c(x

∗; t∗90)dx∗ = 0.9. (11)

Let us note that the total concentration of the antigen is 250
times higher than the concentration of the antibody in the in-
let electrolyte and the relationship between the dimensional
and the dimensionless saturation times is given by a time
scaling factort0 (seeTable 2), e.g.,t50 = t0t

∗50.

The Fig. 4A shows the dependence of saturation times
on the voltage applied on the boundaryx∗ = 0. When no
potential is applied, the antibody is transported only by dif-
fusion and weak convection (vx = 1�m s−1). Saturation
takes more than half an hour. Saturation times sharply in-
crease up to infinity as the value of potential decreases be-
low zero. The required 50 or 90% saturation of antigen is
not achieved if a negative potential less than several tenths
of volt is imposed. Conversely, a positive potential imposed
on the input boundary accelerates the antigen saturation in
the reaction compartment due to electrophoretic migration
of the antibody with a positive electrostatic charge. Satu-
ration time decreases with the growing potential up to an
asymptote given by the limiting current. In the proposed sys-
tem with negative charge fixed in the porous compartments
and positive electrostatic potential on the input boundary,
concentrations of all ions near the interface between the in-
put and reaction compartments drop to zero (as explained in
the steady-state section). Although the potential on the input
boundary increases, the electromigration term of ions near
the interface cannot grow due to almost zero ion concentra-
tions. On the other hand, for example, the flow of chloride
ions must be kept constant through the entire system. Hence
the low ion concentration at the phase interface must be lo-
cally compensated by a large electric filed intensity in or-
der to keep the electromigration term on the same level as
in the non-interface regions. It means that a higher voltage
only increases the potential gradient on the interface with a
low electrical conductivity. Existence of the phenomena de-
scribed above limits a minimal time of the incubation phase
to t90 ≈ 500 s.

The dependence of saturation times on the value of
convective velocity is plotted inFig. 4B. The choice of pa-
rameters results in electroosmotic flux of the electrolyte in
the positive direction. We can follow a rapid decrease of the
saturation times with the increasing velocity. When the in-
tensity of the convective transport dominates, there is no
limitation by the limiting current. Hence, the saturation time
can steadily decrease to the value of convective velocity
where the rate of the antigen–antibody binding reaction be-
comes limiting. Let us make a rough estimate of this value.
Let only the free form of antigen be present in the reaction
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compartment; the concentration of the antibody is at the
same level as at the input boundary, and the diffusion
and electromigration fluxes of the antibody are negligible.
Hence the rate of the antigen consumption in the reaction
compartment has to be equal to the rate of the antibody
supply by convective flux

JC
Ab|x=0A = −rcAl2 ⇒ vx = kccAg,totl2. (12)

In this case, the limitation of the ELISA process occurs at
vx ≈ 1 mm s−1. Velocity of the electroosmotic convection is
usually in tens of micrometers per second. Hence the system
operates in the regime limited only by the rate of transport.

We can also estimate the saturation time necessary for the
incubation period in the regime with dominating convection
transport. There are two contributions to the final value of
time of incubation: transport through the input compartment
(tinp) and the accumulation of the antibody molecules in the
reaction compartment (tac)

t = tinp + tac = l1

vx
+ nAg

JC
Ab|x=0A

= (l1 + l2cAg,tot)/cAb|x=0

vx
, (13)

here nAg is the total molar amount of the antigen in the
reaction compartment andA the surface area of the probe
cross-section. For example, whenvx = 50�m s−1, time of
the incubation is approximately 54 s, which agrees with the
results of the simulations.Eq. (13)is not valid for low values
of convective velocity because of the presence of both the
electrophoretic and the diffusion transport. Let us note that
time t in Eq. (13)is only a guess of duration of saturation
received from analysis of the transport parameters of the
system. In a limit case of infinitely fast complex formation,
the transport timet of incubation period corresponds to the
time of 100% saturation of the antigen binding sites.

The saturation time can be also affected by the diffu-
sion coefficient of the antibody. Both the diffusion and the
electromigration fluxes depend on the value of diffusion
coefficient. Dependence of the saturation times on values
of the diffusion coefficient of the antibody are plotted in
Fig. 4C. The dependence has a sigmoidal shape. There is
also an asymptote for the saturation time. When the diffu-
sion coefficient of the antibody is very low, the convection
transport becomes dominant andEq. (13), which does not
depend on the value of diffusivity, can be applied. On the
other hand, if the effective diffusion coefficient of the an-
tibody is high (DAb ≥ 1 × 10−10 m2 s−1), the antibody
molecules are mostly transported by electromigration. The
electromigration velocity can be computed fromEq. (4)
where the intensity of the imposed electric field at the input
boundary is used (as the first approximation, we can assume
linear profile of potential through the system). The antibody
concentration in the system is much lower than the concen-
tration of the buffer. Thus we can assume that the distribution
of the electric field intensity almost does not depend on the

accumulation of the antibody in the input and the reaction
compartments. If we substitutevx in Eq. (13)by the expres-
sion for the electromigration velocity (Eq. (4)), we receive a
formula for evaluation of the saturation times in this limiting
case. Let us note that interval of physically relevant values of
effective diffusivity of antibody is narrower than inFig. 4C.

Finally, we have analyzed an entire working cycle of the
ELISA probe. The model parameters (seeFig. 5) of this sim-
ulation were chosen on the basis of the previous steady-state
and dynamical analysis. The working cycle was divided into
two parts: the incubation periodt ∈ (0,300) s and the elu-
tion/detection periodt ∈ (300,600) s. For the incubation
period, the distributions of both the antibody concentration
on intervalx∗ ∈ 〈19; 21〉 (i.e. in the vicinity of the phase
interface between the input and reaction compartments) and
the antigen–antibody complex in the reaction compartment
are plotted inFig. 5A and D, respectively. The profiles of
the antigen concentration show sharp increase close to the
phase interface (x∗ = 20) following from a step change of
volume density of the fixed negative charge at the phase in-
terface. The antibody molecules pass the reaction compart-
ment and form the antigen–antibody complex. The level of
saturation of the antigen binding sites is plotted inFig. 5D
for the chosen times of the incubation. As we can see, the
reaction environment is almost fully saturated by the anti-
body at t = 300 s. Free antibody molecules start to accu-
mulate near the interface of the reaction compartment and
the semipermeable membrane. It substantially increases the
concentration of the free antibody in the reaction compart-
ment. On the other hand, the antibody concentration near
the phase interface remains low due to the depletion of pos-
itively charged ions by the negative fixed charge in the re-
action compartment.

The polarity of the external electric field (and thus the ori-
entation of the electroosmotic flow) is switched after the sat-
uration of the antigen binding sites (t = 300 s). It is evident
that the concentration of the antibody molecules quickly ap-
proaches zero (seeFig. 5B, t = 340 s). This effect is very
important for the detection phase. An excess of the free anti-
body, e.g. tagged by a fluorescence group, is able to disturb
the detection of the antigen–antibody complex. The residual
low concentration of the antibody att = 600 s is given by
the dissociation reaction of the antigen–antibody complex
in the reaction compartment. The complex concentration re-
mains high enough during the first 300 s of the elution pe-
riod (Fig. 5E). The entire elution period is much longer than
shown inFig. 5F because rate of the complex dissociation
is low. This effect increases time of prospective regenera-
tion of probe. On the other hand, high complex concentra-
tion is necessary for successful detection of the antibody in
the sample. Note that the ratio of the scaling factors of the
antibody concentration and of the complex concentration is
cAb|x=0/cAg,tot.

For clarity, the time courses of the spatially averaged con-
centrations of both the antibody and the complex are plotted
in Fig. 5C and F. The concentration of the antigen–antibody
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Fig. 5. Analysis of the working cycle of ELISA probe. The plots (A) and (D) show distributions of both the antibody concentration near the interface
of the input and the reaction compartments and the complex concentration in the reaction compartment, respectively, in the incubation phase (t = 0 s
(dotted line), t = 20 s (dash-dotted line),t = 160 s (dashed line),t = 300 s (solid line)). The plots (B) and (E) show the same distributions as the
plots (A) and (D) in the elution/detection phase (t = 300 s (dotted line),t = 320 s (dash-dotted line),t = 340 s (dashed line),t = 600 s (solid line)).
Incubation phase:Φ|x=0 = 1 V, vx = 10�m s−1; elution phase:Φ|x=0 = −1 V, vx = −10�m s−1. Time courses (during the complete working cycle) of
both the mean antibody concentration in the input and the reaction compartments and the mean complex concentration in the reaction compartment are
plotted in (C) and (F), respectively. The boundary concentration of the antibody iscAb|x=0 = 4 × 10−6 mol m−3 during the incubation period. Either
cAb|x=0 = 4 × 10−6 mol m−3 (solid line in (C)) orcAb|x=0 → 0 mol m−3 (the dashed line in (C)) is chosen as the antibody boundary condition during
the elution period. The other parameters areDAb = 5 × 10−11 m2 s−1, Dp

Ab = DAb/5, qfix = −1 × 106 C m−3, zAb = 1, see alsoTable 1.

complex is averaged over the reaction compartment (interval
x∗ ∈ 〈20; 21〉) and the concentration of antibody molecules
is averaged over both the input and reaction compartments
(interval x∗ ∈ 〈0; 21〉). The working cycle can be divided
into five different periods:

(1) initial period—the antibody molecules are transported
from the input boundary to the reaction compartment,
t ∈ (0,20) s.

(2) saturation period—the antibody molecules bind to the
immobilized antigen,t ∈ (20,220) s,

(3) accumulation period—an excess of the antibody
molecules accumulates in the reaction environment,
t ∈ (220,300) s,

(4) elution period—the excess of the antibody molecules is
transported out of the system,t ∈ (300,340) s,

(5) dissociation period—the antibody molecules are re-
leased from the complex,t > 340 s.

Generally, the dissociation period is very long because of
high affinity (equilibrium constantKc = 1×10−7 mol m−3)
between the antigen and the antibody. Proper change of the
electrolyte acidity is one way how to accelerate this pro-
cess. The dissociation period of the elution phase also de-
pends on the selection of the antibody concentration on the
input boundary. For illustration, we have computed the time
courses for two limiting cases:

(1) cAb|x=0 in the elution/detection phase is the same as in
the incubation phase (cAb|x=0 = 4 × 10−6 mol m−3),

(2) cAb|x=0 → 0 mol m−3 in the elution/detection phase.

The results of dynamical simulations show that the effect
of the antibody concentration on the boundary is negligi-
ble during the elution/detection phase (see comparison in
Fig. 5C). The entire working cycle is lower than 10 min for
the given set of parameters.

5. Conclusions

A typical arrangement of a microchip for an immunoassay
application utilizing electric field has been described. This
microdevice consists of a main microchannel for sample in-
troduction and of lateral ELISA probes where detection of
antibody molecules occurs. Each ELISA probe is composed
of input, reaction, semipermeable and output compartments.
For this immunoassay chip, we have illustrated possibili-
ties of modeling that uses a simplified description of spatial
profiles and transport of biomacromolecules. A formulated
mathematical model of the ELISA probe was numerically
studied in detail.

First, we have focused on a detailed analysis of steady
states in one ELISA probe. Effects of parameters such as an-
tibody diffusivity, antibody charge number, polarity and in-
tensity of an external electric field, convective velocity, and
amount of fixed charge in porous compartments on the be-
havior of the probe were studied. Values of the model param-
eters giving a large increase of the antibody concentration in
the reaction compartment were determined. The steady-state
analysis clarified phenomena near phase interfaces such as
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formation of an electrical double layer and existence of a
limiting current in the system.

Simulations of dynamic behavior of the probe were
aimed at finding regions of parameters for short incubation
period. The time required for the saturation of the antigen
binding sites by the antibody molecules was determined
in dependence on three model parameters: the electrostatic
potential imposed at the input boundary, the velocity of the
electroosmotic flux, and the diffusion coefficient of the an-
tibody. Shapes and asymptotes of these dependences were
described by means of simple relationships.

Finally, we have analyzed a complete ELISA cycle (i.e.
the incubation and the elution/detection periods) in detail.
For modeled conditions, the complete cycle can be realized
in less than 10 min.

Acknowledgements

Financial support of this project by the Grant Agency
of the Czech Republic (partly grants no. 104/03/D006,
104/01/1319, 104/02/0339) is gratefully acknowledged.

Appendix A. Dimensionless model

Before the implementation of the model into the FEM-
LAB package, the modelEqs. (1), (6) and (8)were trans-
formed into dimensionless form. The used scaling factors
and dimensionless variables and groups are given inTable 2.
The mathematical description of the system varies from a
compartment to compartment due to different composition
of the electrolyte and of the fixed charge in porous media.
Eqs. (A.1)–(A.8)can serve as an example of the description
of complex reaction-transport problem inside the reaction
compartment:

∂c∗H
∂t∗

= −v∗ ∂c
∗
H

∂x∗ +D
p
H
∂2c∗H
∂x∗2

+ D
p
H
∂

∂x∗

(
c∗H
∂Φ∗

∂x∗

)

+ DaB

[
Kb√
Kw

c∗Bp − c∗Hc
∗
B

]
+ DaH(1 − c∗Hc

∗
OH),

(A.1)
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(
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)
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)
,

(A.7)

∂2Φ∗

∂x∗2
= −G

[ √
Kw

cB|x=0
(c∗H − c∗OH)− c∗Cl + c∗Bp

+ cAb|x=0

cB|x=0
zAbc

∗
Ab + cAg,tot

cB|x=0
zAbc

∗
C +Q

]
. (A.8)
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